STL Science Center

STL Science Center

21 July 2018

The Mouse Lizard

Reaching an estimated 3 m (10 ft) in length and 70 kg (150 lbs) in weight, the early sauropodomorph Mussaurus patagonicus was an aptly named dinosaur. The name means "Mouse Lizard" and was applied originally to the skeletons of infants, which are considerably smaller at 20 to 37 centimeters (7.9 to 14.6 in) long, because these were the only specimens known for a fairly long time. Some of the first adult specimens were found alongside or within nests of the already known juvenile and infant dinosaurs. Eggs of this species have also been found in some of these nests. The original juvenile specimens were described in 1979 and the first adult specimens were not described until 2013. The first adult specimens in this description were actually reassigned from Plateosaurus specimens that were described mistakenly in 1980. Their similarities make sense because both were early dinosaurs and both were early sauropodomorphs.
©Henrique Paes

19 July 2018

Known but not Famous

I mentioned on Tuesday that Staurikosaurus is a much published and important dinosaur in the scientific community. Outside of the scientific community the knowledge about, and reaction to, the existence of Staurikosaurus is minimal at best. Staurikosaurus does appear in a number of popular arenas, including the video game on the original PlayStation (see the video below at 5:39 for this version of Staurikosaurus). One place we know that people know about Staurikosaurus for sure is Brazil, where the animal was originally discovered and unearthed. Canela, a town near the discovery site, has a statue of Staurikosaurus alongside a small rhynchosaur.
Photo by Sergio Kaminski, CC BY-SA 3.0

17 July 2018

Papers and Beyond

Staurikosaurus headlines a chapter in an older edition of the book The Dinosauria. This chapter has been replaced in newer editions of the book, but the importance of Staurikosaurus and the many papers discussing the anatomy and the phylogeny of Staurikosaurus remain in the newly re-designated chapters. These include the papers that initially described the holotype fossil (Colbert 1970) and estimates of missing elements of the skeleton (Grillo and Azevedo, 2011b) as well as those that ask questions about the origin of saurischian dinosaurs and Staurikosaurus' placement in this discussion (e.g. Galton, 2000). Staurikosaurus continues to be studied beyond the skeleton and its phylogenetic importance to the evolution of dinosaurs also. Grillo and Azevedo (2011a) studied the pelvis and hindlimb to describe the state of the musculature in these areas. These papers should be plenty for a day's reading, so enjoy learning more about the anatomy of Staurikosaurus and where this dinosaur sits in the dinosaur family tree!

References:
Colbert, E.H., Price, L.I. and White, T.E., 1970. A saurischian dinosaur from the Triassic of Brazil. American Museum novitates; no. 2405.

Galton, P.M., 2000. Are Spondylosoma and Staurikosaurus (Santa Maria Formation, Middle-Upper Triassic, Brazil) the oldest saurischian dinosaurs?. PalZ, 74(3), pp.393-423.
 
Bittencourt, J.D.S. and Kellner, A.W.A., 2009. The anatomy and phylogenetic position of the Triassic dinosaur Staurikosaurus pricei Colbert, 1970. Zootaxa, 2079(1), p.e56.
 
Grillo, O.N. and Azevedo, S.A., 2011. Pelvic and hind limb musculature of Staurikosaurus pricei (Dinosauria: Saurischia). Anais da Academia Brasileira de Ciências, 83(1), pp.73-98.
 
Grillo, O.N. and Azevedo, S.A., 2011. Recovering missing data: estimating position and size of caudal vertebrae in Staurikosaurus pricei Colbert, 1970. Anais da Academia Brasileira de Ciências, 83(1), pp.61-72.

15 July 2018

Short Video

Staurikosaurus is not very well known, in terms of media presence and general availability of quality fact pages on the internet. There are a few notable pages, such as the NHM in London, KidsDinos, and the DinosaurFacts website. These pages are all summarized, for the most part, in the WizScience slide show/video that has been made for Staurikosaurus shown below.

14 July 2018

Brazilian Theropod

Herrerasaurids make up some of the earliest dinosaurs and the earliest theropod dinosaurs as well. These small carnivorous bipeds are known for their agile appearances and small stature as well as their basal characteristics that laid the groundwork for their descendants, even some of the characteristics that can be found in the latest theropods like tyrannosaurids and abelisaurids. These characteristics were modified over time of course, but the changes can be traced back to these small herrerasaurid dinosaurs that have mostly be found in South America from a number of different locations. One of these locations, in Brazil, was the discovery site of an animal known as the "Southern Cross lizard", Staurikosaurus pricei. The specific epithet honors one of Brazil's first paleontologists, Llewellyn Ivor Price, who collected the fossil which was later described by Edwin H. Colbert. Staurikosaurus was Brazil's first discovered and described dinosaur, but has remained a very uncommon find, meaning that either it was not native to an area that allowed for easy fossilization (such as a forest) or was simply uncommon in its environment.

Staurikosaurus was one of the first dinosaurs and that makes its fossilized remains just as important in understanding the rise of dinosaurs as those of Herrerasaurus and other dinosaurs considered to be the first members of the dinosaur clade. Its long slender limbs appear to have been well equipped for running; forelimbs are missing from the fossil record so we do not know if was good at catching its prey. We do know that its jaw was filled with many serrated and recurved (curved toward the back of the skull) teeth, so it could have caught prey with its mouth rather than with hands. These teeth were also able to slice into its prey. As far as predators of the Late Triassic are concerned, Staurikosaurus was likely a fearsome foe for many smaller reptiles and mammals that it lived with.
©Nobu Tamura

12 July 2018

Socketed Teeth

Thecodontosaurus was named for its teeth. Thecodont teeth are situated so that the base is completely enclosed in a bony socket, like our teeth and the teeth of other mammals, crocodilians, and dinosaurs. To help visualize this refer to the image below.
The specific epithet refers to the ancient age of the animal. John Morris, the English geologist who provided the specific epithet in 1843, simply appended the name antiquus to Thecodontosaurus, attributing the name to Henry Riley, the surgeon who helped with the excavation, without any explanation. Therefore we do not know what Morris was referencing with the name T. antiquus. It could be either the fact that it was a fossil animal or that it came from Triassic rock. We may not know any time soon.

Over 245 fragmentary specimens of Thecodontosaurus are known, all attributed to this single species; not for a lack of trying though as 14 other species have been named only to be reassigned to other genera or re-folded into the single valid species. A second species was speculated in 2000 by Benton et al., 2000 when observing more robust specimens of Thecodontosaurus. In the same paper the authors stated that the more robust morphology was equally as likely a result of sexual dimorphism as it was a potential additional species. Regardless of the findings of the paper as regards sexual dimorphism or secondary species, two morphologies are acknowledged simply as gracile and robust.

09 July 2018

A Short Short

Thecodontosaurus is not very famous in terms of on film presence (for many dinosaurs this translates simply into "not very famous" at all). However, the University of Bristol started a program in 2000 to engage and educate the public using the research and expertise of university faculty in conjunction with local (and global) fossils and the research that has gone into them. Thecodontosaurus is a dinosaur that was featured heavily in the Bristol Dinosaur Project because it was a very local (read found near, around, and in Bristol) dinosaur that made for an engaging animal in the initial stages of the growth of the Bristol Dinosaur Project; the project originally centered around the recovery and preparation of Thecodontosaurus specimens in addition to the outreach components conducted by the faculty. In fact, the mission statement is still mostly concerned with laboratory work on Thecodontosaurus specimens, but the outreach component appears to continue to be a very valuable portion of the work. The website is a little outdated and other news sources only cover up to the funding cycle for 2013, though the Bristol Zoo (which partnered with the university for some time) last mentions their dinosaur exhibit during the summer of 2017, so there is hope. Anyone that knows more about the project's current state is encouraged to share more with us, but we can only hope that a wide-reaching scientific and educational project like this is still in effect.